Motor adaptation as a greedy optimization of error and effort.

نویسندگان

  • Jeremy L Emken
  • Raul Benitez
  • Athanasios Sideris
  • James E Bobrow
  • David J Reinkensmeyer
چکیده

Motor adaptation to a novel dynamic environment is primarily thought of as a process in which the nervous system learns to anticipate the environmental forces to eliminate kinematic error. Here we show that motor adaptation can more generally be modeled as a process in which the motor system greedily minimizes a cost function that is the weighted sum of kinematic error and effort. The learning dynamics predicted by this minimization process are a linear, auto-regressive equation with only one state, which has been identified previously as providing a good fit to data from force-field-type experiments. Thus we provide a new theoretical result that shows how these previously identified learning dynamics can be viewed as arising from an optimization of error and effort. We also show that the coefficients of the learning dynamics must fall within a specific range for the optimization model to be valid and verify with experimental data from walking in a force field that they indeed fall in this range. Finally, we attempted to falsify the model by performing experiments in two conditions (repeated exposure to a force field, exposure to force fields of different strengths) for which the single-state, auto-regressive equation might be expected to not fit the data well. We found however that the equation adequately captured the pattern of errors and thus conclude that motor adaptation to a force field can be approximated as an optimization of effort and error for a range of experimental conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Motor Adaptation as a Greedy Optimization of Error and Effort Authors

Motor adaptation to a novel dynamic environment is primarily thought of as a process in which the nervous system learns to anticipate the environmental forces in order to eliminate kinematic error. Here we show that motor adaptation can more generally be modeled as a process in which the motor system greedily minimizes a cost function that is the weighted sum of kinematic error and effort. The ...

متن کامل

Efficiency Improvement of Induction Motor using Fuzzy-Genetic Algorithm

In most industrial zones, electric energy is one of the most important energy sources. Since electrical motors are the main energy consumers of industrial factories, consumption optimization in these motors can be considered as a main option related to energy saving. One very effective way to reduce the consumption of these equipment is to use a motor speed controllers or drives. Since the loss...

متن کامل

Context-dependent memory decay is evidence of effort minimization in motor learning: a computational study

Recent theoretical models suggest that motor learning includes at least two processes: error minimization and memory decay. While learning a novel movement, a motor memory of the movement is gradually formed to minimize the movement error between the desired and actual movements in each training trial, but the memory is slightly forgotten in each trial. The learning effects of error minimizatio...

متن کامل

A New Multi-Objective Optimization Method Based on Genetic- Fuzzy Algorithm and its Application in Induction Motor Speed Control

In this paper, a new method based on genetic-fuzzy algorithm for multi-objective optimization is proposed. This method is successfully applied to several multi-objective optimization problems. Two examples are presented: the first example is the optimization of two nonlinear mathematical functions and the second one is the design of PI controller for control of an induction motor drive supplie...

متن کامل

A New Multi-Objective Optimization Method Based on Genetic- Fuzzy Algorithm and its Application in Induction Motor Speed Control

In this paper, a new method based on genetic-fuzzy algorithm for multi-objective optimization is proposed. This method is successfully applied to several multi-objective optimization problems. Two examples are presented: the first example is the optimization of two nonlinear mathematical functions and the second one is the design of PI controller for control of an induction motor drive supplie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 97 6  شماره 

صفحات  -

تاریخ انتشار 2007